Monte Carlo simulation of the cometary contribution to the LHB

Hans Rickman

Planetesimal formation

The giant planet growth region was cleared by gas drag and gravitational scattering early on – indications are that this led to ice dumping inside the region

The region inside the H₂O snow line saw the birth of the asteroid Main Belt precursor

The outer disk may be the source of all observed comets!

Transplanetary disk population

- Mass frequency function: $\phi(M)dM$ = fraction in [M,M+dM]
- Average mass: $\langle M \rangle = \int_{M_{min}}^{M_{max}} \phi(M) M \, dM$
- If N is the total number of objects in $[M_{\it min}, M_{\it max}], \mbox{ the total mass is: } \\ M_{tot} = N\langle M \rangle$
- $\langle M \rangle$ is given by $\phi(M)$, M_{min} and M_{max}
- N is then given by M_{tot}

Wide range of sizes

Even smaller do exist!

103P/Hartley 2

Larger ones may exist!

Eris + Dysnomia

Diam. ≈ 1.4 km

Diam. ≈ 2300 km

Fixing the parameters

• M_{min} comes from observations: $R_{min} \approx 0.5$ km

• M_{max} may come from: $N \int_{M_{max}/2}^{M_{max}} \phi(M) \, dM \sim 1$ or from comet formation theory(?)

• $\phi(M)$ may be modeled on the Main Belt size distribution, checking on the JF at the small end

Comet size distributions

s = cumulative size distribution power-law index

• Jupiter Family (diam. 4-10 km)

Meech et al. (2004): $s \approx 1.9$

Tancredi et al. (2006): $s \approx 2.7$

• Jupiter Trojans (diam. 4-40 km)

Jewitt et al. (2000): $s \approx 2.0$

Transneptunians (diam. > 100 km)

Gladman et al. (2001): $s \approx 3.4$

Bernstein et al. (2004): much lower at 25 km

Asteroid size distribution

- Drag-induced orbit drift is a serious barrier to bottom-up planetesimal formation in the Main Belt
- Asteroids may have formed big (D > 100 km), according to Morbidelli et al. (2009)
- Smaller asteroids are then collisional fragments (LHBrelated?)

Morbidelli et al (2009)

Would this be similar for comets?

Number of impacts

- If there are ΔN objects entering into JF orbits within a given mass range, the number of impacts onto planet 'i' will be $\Delta N \times p_c^{(i)}$, where $p_c^{(i)}$ is the integrated impact probability, averaged over the whole ensemble of possible physical and dynamical evolutions of the entering objects
- While the dynamics is almost independent of *M*, the physical evolution is mass dependent (low mass comets may have shorter lifetimes)

The Jupiter Family

Jupiter Family dynamics

- The main driver is orbital deflections at close encounters with Jupiter, causing jumps in (Q,q) more or less conserving the value of T and keeping cos i close to 1
- JF comets tend to be discovered shortly after downward jumps (decreasing q)
- A typical visit into the JF, from injection to ejection, lasts for 10^4-10^5 yr and is characterized by a certain q_{min} , which is different for different comets

Discovery bias

- Strong discovery bias,
 typically requiring q<2.5 AU
- This limit has increased to larger q in recent years
- The role of q is determined by the mechanisms of comet activity (H₂O or CO driven)
- The current orbit distribution is an observationally biased shapshot of a relaxed, steadystate population

Jupiter Family

Planet-to-planet variations

- All contributions to $p_c^{(i)}$ vanish, when $q > Q^{(i)}$
- The observed q distribution thus indicates a trend for increasing p_c from Mercury to Mars (but this is just one factor)
- We wish not just to count the impacts but also to characterize them in terms of the mass and speed of the impactor
- The mass at impact is less than the entry mass and depends on physical evolution
- The speed is found from the approach velocity:

$$U_i = V_i \sqrt{3 - T_i}$$

JF comet encounter velocities

Escape speeds: 5 km/s resp. 11 km/s

Monte Carlo simulation

- Trace the orbital and physical evolutions of a large number of representative objects in a simple dynamical model
- Treat different initial masses M separately
- For each revolution, derive all contributions $\Delta p_c^{(i)}$ and mark them by the appropriate mass m (after physical evolution) and approach velocity U_i
- At the end of each visit, compute the integrated impact probabilities and the associated distributions of approach velocities
- The total sample of visits is taken to represent the real objects

Special cases

- Comet 2P/Encke is a large contributor to the current impact risk of short-period comets, but it is totally unrepresentative in terms of dynamics – decoupled from Jupiter and likely ending up by colliding with the Sun
- Our MC simulation must not neglect this kind of object!
- We will consider gravitational deflection by terrestrial planets as production mechanism

Gravitational deflection

- Similar to our mapping of $\Delta p_c^{(i)}$, we obtain probabilities of passing close enough to exceed a certain limiting deflection angle
- We pick at random a certain number of orbits based on these probabilities, and let these give rise to a 2nd generation of orbiting objects with deflected orbits – this will likely include Encke-types and predict their expected abundance and contribution to the impacts

Physical evolution

- We intend to model:
- Erosion due to sublimation
- Dust mantling influencing the erosion
- Dust mantle blow-offs
- Non-tidal splitting events
- The aim is to find a model that reproduces the observed statistical features of the JF comets and from this determine the relevant mass loss rates and lifetimes for the MC simulation